|
冷核聚变是指在接近常温常压和相对简单的设备条件下发生核聚变反应。核聚变反应中,多个轻原子核被强行聚合形成一个重原子核,并伴随能量释放,也称为低能量核反应(low energy nuclear reactions, LENR)。
有关冷核聚变最著名的事件是1989年的弗莱西曼-庞斯实验,由于这个当时引起轰动的实验没能够重现,20年来一直被视作科学研究的反面典型之一。
不过,根据Physicsworld报道,上周日本知名科学家,大阪大学名誉教授Yoshiaki Arata在媒体前公开展示了他最新的研究成果,在常温条件下将氘气变成氦。
将氘气压入钯锆氧化物(ZrO2-Pd)后,反应容器的温度上升到70摄氏度,并且长期处于远高于室温的状态达50个小时。据称这些热量便是来自冷核聚变反应。
目前,全世界许多科学家已经开始密切关注此次实验,稍后会有更详细的报道。
核能可以通过两种不同的过程释放出来,即裂变和聚变。裂变是使原子核分裂,它就是商业核电力和简单原子弹的能源。聚变过程是两个氢原子核发生碰撞,从而聚合在一起。因为原子核具有电荷相互排斥,所以要得到聚变反应是极端困难的。只有在超常的高温下,原子核才会发生聚变。在太阳的中心和在氢弹中,发生的就是聚变。在氢弹中,是利用简单的裂变原子弹产生的大量热能来使氢原子核聚合。科学家们积极研究,已经提出一些利用高温聚变所产生的能量的方案,但是,由于达到必要的高温十分困难,更由于那样的高温难于维持,这样的目标至今未能实现。然而,受控聚变动力的这一前景,却一直吸引着关注我们世界能源需求的许许多多的科学家和工程师。
早先有关裂变的研究一直集中在需要极高温度的方法。大约在1984年,有两位电化学家开始关注起在低温下产生聚变的课题。一位是马丁•弗莱西曼,英国皇家学会的成员和南安普敦大学的电化学研究教授;另一位是斯坦利•庞斯,美国犹他大学的化学教授。他们设想,如果强行把两个氘(氢元素的一个变种)原子核挤进一个容不下两个原子核的小空间,这两个氘原子核就有可能发生聚合。金属钯的分子结构便提供了适合这种要求的小空间。
为了把氘核挤入钯金属的晶格中,他们制作了一个电解槽,电解槽里的重水中有所需要的氘原子,而电解槽的阴极是用钯制成的。他们的假说是:电流从阳极向阴极的运动会迫使氘原子核从重水移入钯的晶格,从而在那里发生聚变。因为这种聚变将会是在接近室温的条件下发生,比起在极高温度下发生的聚变,它是“冷的”。而查明聚变发生的主要线索是两个迹象:一是,发生聚变应产生的辐射,这可以通过测量放射性粒子即中子的数量来加以确定;另一个是,电解槽所产生的能量应当肯定大于提供给电解槽的电能,这可以通过测量温度来加以确定。
核聚变的具体过程及原理是:只有当具有足够能量的氘核的S极与氚核的N极在顺磁通道中相碰撞时才是产生氦核的唯一机会。带着强大能量的氘核碰撞到氚核后,部份能量像钢体性弹性碰撞一样顺次传递给氚核S极最末的一个中子,这个中子得到能量并克服质子的吸引飞出核外。如图4-3所示。这也是为什么不用两个氘核碰撞聚变成氦核的原因,氘核碰撞到氘核后,部份能量像钢体性弹性碰撞一样顺次传递给第二个氘核S极最末的一个质子,这个质子得到能量克服其它质子的吸引飞出核外,最终只能形成氚核;这个氚核再被氘核打击才能行成氦核,所以许多科学人士做这个实验时能得到:中子、氚和伽马射线。
本文分三个方面具体说明,第一个方面要说明为什么碰撞要具有强大的能量,那是因为核力具有特殊区域的引力区。第二方面说明具体两个核是怎样完成聚变的。第三方面说说冷核聚变和可控聚变的可行性。
一、变的两个核距离必须达到核力区
这个条件是由原子核核力特殊的性质决定的。(要具体了解核力性质可以看看《核力性质和大小的计算》)
受控聚变的研究之所以如此艰难,一个根本的原因,是由于所有原子核都带正电。核力是一种短程力。2个带正电的原子核互相接近时,它们之间的静电斥力也越来越大。只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力才能起作用。这时由于核力大于静电斥力,2个原子核才能聚合到一起,放出巨大的能量。由于2个原子核聚合前首先要克服强大的静电斥力,所以在地球上现有的条件下,很难发生聚变。为了实现铀-235、钚-239等的裂变,不需要入射中子及靶原子核具有任何动能;而为了使2个原子核聚变,首先必须使两个原子核的一方或双方有足够的能量,去克服彼此之间的静电斥力。这就是全部症结之所在
质子中子都是被磁化后产生的相互吸引,使核力表现出与“电荷无关性质”。相邻两个质子间隔1-2个中子同轴同旋转才有强力的吸引作用,使核力表现出“饱和性”和方向性的特点。每个质子都是通过中子与其它质子产生吸引的,使核力表现出“交换性”的特点。安培力与主轴有关,偏离轴心太大安培力迅速减弱,而库仑力只与距离有关的无心力,使核力表现出“有心力和无心力的综合性”的特点。质子上正电荷的分布只在一个小点上,这个点在高速旋转时产生一个安培力。这就是核力的根本所在,核力就是由安培力吸引和库仑斥力组成。这两个力作用下,在1-3个直径之内表现出引力,在这个之外表现出斥力,并表现核力的各种特性。如图4-1
所以,两个原子核要想聚合在一起必须满足两个条件:第一,两个原子核必须具有一定能量达到核力区域,这个区域在质子相距1-3个直径之内,不能超过,刚刚达到核力区就能相互吸引。第二,两个原子核必须同轴同方向自旋,取顺磁方向;这就是聚变的机制.
要具有的一定能量可以通过裂变产生高温获得,也可以从低温加速顺磁对碰强行达到核力区域。
二、变的两个核必须同方向碰撞
这个条件是由原子核特殊结构决定的。(要具体了解核的结构必须看看《原子核的大树形接触式结构模型》)
氘、氚、氦三个核结构,根据“所有质子、中子的增多,总是先从能级最低层次排起,并且总是从核内磁场的北极增加”。所以氘核的一个中子排在北极;氚核结构在主轴上北极南极各排一个中子;氦核结构两质子间间隔一个中子组成核,另一个中子排在北极上。
可见:氘、氚两个S极相碰撞或两个N极相碰撞都不能聚合在一起。只有当氘核的S极与氚核的N极相碰撞时才是唯一产生氦核的机会。带着强大能量的氘核碰撞到氚核后,部份能量像钢体性弹性碰撞一样顺次传递给氚核S极最末的一个中子,这个中子得到能量并克服质子的吸引飞出核外。这也是为什么不用两个氘核碰撞聚变成氦核的原因,氘核碰撞到氘核后,部份能量像钢体性弹性碰撞一样顺次传递给第二个氘核S极最末的一个质子,这个质子得到能量克服其它质子的吸引飞出核外,最终只能形成氚核,这个氚核再被氘核打击才能行成氦核,所以许多科学人士做这个实验时能得到:中子、氚和伽马射线。还有一种情况:当氘核的N极与氚核的S极相碰撞时也能产生氦核,但这个氦核不稳定要变化成单中子结构才稳定,因为单中子比双中子结构结合力大得多。所以,只有当氘核的S极与氚核的N极相碰撞时才是产生氦核的唯一机会。完全可以通过实验验证:实验一定能够发现碰撞后核内中子主要从南极S极弹射出来,就说明这个结论是完全正确的。
实验时可以将氘核作子弹、氚核作靶子,子弹和靶子都必须在顺磁通道内。也可以将氘核作子弹、氚核也作子弹在顺磁通道内相对碰撞。在低温下要做到这些确实不容易。所以有更多的人采用高温做实验:高温时,总有部份氘核、氚核相遇相碰撞,产生的能量又使更多的氘核、氚核相遇相碰撞,要控制这种聚变完全不可能吧。注意:氘核、氚核都是小核结构,圆周旋转速度快,要想使两者顺磁高速度运动确实让所有科学人士用用脑。
三、控聚变和冷核聚变完全可能
只要清楚了聚变的以上两个条件,可控聚变和冷核聚变完全可能实现。
“冷核聚变”又称“低能核反应”,或“化学辅助核反应”。1989年3月23日,美国犹他大学在盐湖城召开了一次不同寻常的新闻发布会,在会上宣称,两位化学家 ——犹他大学的斯坦利•庞斯博士和英国南安普顿大学的马丁•弗莱希曼博士实现了常温核聚变:他们在电化学实验中观察到室温条件下两次氘原子的核聚变。按照核聚变原理,核聚变将会释放出中子、氚和伽马射线,同时释放出巨大的能量。后因担心发生爆炸,他们及时终止了实验。
消息传出,在学术界引起的震动不亚于一次真正的核爆炸,因为许多科学家都在梦寐以求地寻找新的核聚变途径。
按照目前的核聚变条件,核聚变只能在极端的高压和高温条件下才能产生,这对反应堆的设计和结构材料的选择都是巨大的挑战。如果能实现室温条件下的核聚变,便意味着将来在实验室里就能提供取之不尽、用之不竭的清洁能源,这无疑将是人类科学史上的重大突破。
这两位化学家的发现激起了全世界无数科学家的兴趣,纷纷开始在实验室里重复这项实验。然而,实验的结果非常令人沮丧,没有一个科学家能够再次观察到室温条件下核聚变的发生。人们开始失望,并逐渐转化为对这两位化学家诚信的怀疑。在弗莱希曼博士和庞斯博士的实验完成半年之后,美国能源部根据许多失败的实验写了一份报告,正式否定了这项轰动一时的科学发现,结论为两位科学家测量错误和为获取研究资金的不恰当动机。
一项似乎能获得诺贝尔奖,并有可能改变人类命运的科学发现就这样被打入冷宫。但是也有许多科学家并未就此罢休。15年来,不断有人继续探索“冷核聚变”的可能性。美国麻省理工学院的彼得•哈格斯坦教授一直在进行“冷核聚变”研究;波特兰州立大学的约翰•达西教授不仅自己相信“冷核聚变”存在,还培养了一群弟子,继续这项研究;意大利的奥古斯都-蒙梯大学在重复“冷核聚变”实验中还取得了不小进展;德国、日本、以色列等国的科学家也在继续这项实验,他们甚至联合起来,成立了一个“国际冷聚变科学协会(ICCF)”,每隔一年半组织一次学术研讨会。
中国与多国科学家组成的聚变实验正在法国内进行中,其中顺磁控制等许多理论正在使用的过程中。希望这个理论能对正在进行的实验起到推动作用,使可控制聚变成为现实。也使进行的实验不是盲目的进行。
1989年4月,我国“室温核聚变”试验获成功。
核聚变是原子核融合并释放出巨大能量的反应,它所用的燃料是轻核,常见的轻核是氢的同位素棗氘和氚,可以从海水中提取。1989年3月23日,美国犹他大学宣布取得了在室温条件下实现核聚变的重大突破。此后,一些国家也宣布复现了这一实验。
“室温核聚变”如能真正成功,将使核聚变实用化有了可能。这样,从浩瀚海洋中提取的能源足够人类使用几百亿年。
我国科学家在进行“室温核聚变”的研究中,也取得了重要进展。北京师范大学数位核物理、电化学、放射化学专家签署的一份实验报告表明,他们以钯管为阴极,铂丝为阳极,放入重水中,从4月18日下午2时开始通电,20小时后,显示有大量中子产生,液体闪烁探测器计数80分钟,探测到中子约700个。19日22时后,他们换上另一个同样大小的钯阴极,并加上氚收集管,其他条件不变继续试验,到4月20日18时,又发现了较多的中子计数。结果与国际上被称为“室温核聚变”的现象相似。
中国核工业总公司也于4月22日宣布:中国工程物理研究院核物理与化学研究所用两种不同的方法,于4月21成功地复现了常温下核聚变。该所的一个研究小组在重水中插入铂和钯两个电极,通电流120小时之后,发现有中子出现,其产额大于每秒100个中子,经专家们认定,试验中出现的中子确实是核聚变反应的产物。该所的另一个研究小组用氘气和钯电极,采用不同的测试手段,于同一天也观测到了较高产额的核聚变中子。 |
|