找回密码
 立即注册
大科技语录:
查看: 2565|回复: 11

对于0.9999999……=1的全面解释

[复制链接]
发表于 2012-7-17 17:56 | 显示全部楼层
GENIUS 发表于 2012-7-17 16:33
0.99999与1只能无限接近,不能等于,就像反比例函数一样

其实还是相等的

   上面有三中证明方法。。。。。
回复

使用道具 举报

发表于 2012-7-20 18:03 | 显示全部楼层
因为0.99……和1之间你不能插进去任何一个数,所以他们两个是相等的,明白了吗
回复

使用道具 举报

发表于 2012-7-18 10:33 | 显示全部楼层
没想那么多 ,小学见过,初中认为1=0.999......99+0.0000.....01现在也这么想
回复

使用道具 举报

发表于 2012-7-18 06:56 | 显示全部楼层
本帖最后由 745221645 于 2012-7-18 07:02 编辑

lz好一个“全面解释”,你已经突破了标题党的范围了
来吧,应该让大家系统的了解一下这个等式了,且看果壳网的文章:http://www.guokr.com/article/19218/

最让人纠结的等式

       0.999... = 1 吗?此问题在国内外大大小小的网络社区里出现了无数多次,每次都能引来上百人激烈的争论,可谓是最经久不衰的老问题了。其实,在学术界里,这个问题也是出了名的争论热点。让我们来看看,数学家们都是怎么来看待这个问题的。

最简单的“证明”
        最简单的证明是这样的:1/3 = 0.333...,两边同时乘以 3,1 = 0.999... 。1998 年,弗雷德·里奇曼(Fred Richman)在《数学杂志》(Mathematics Magazine)上的文章《0.999... 等于 1 吗?》中说到:“这个证明之所以如此具有说服力,要得益于人们想当然地认为第一步是对的,因为第一步的等式从小就是这么教的。”大卫·托(David Tall)教授也从调查中发现,不少学生看了这个证明之后都会转而开始怀疑第一个等式的正确性。仔细想想你会发现,“1/3 等于 0.333…” 与 “1 等于 0.999…” 其实别无二致,它们同样令人难以接受。正如很多人会认为 “0.999… 只能越来越接近 1 而并不能精确地等于 1” 一样,“0.333… 无限接近但并不等于 1/3” 的争议依旧存在。问题并没有解决。

另一个充满争议的证明
       大卫·福斯特·华莱士(David Foster Wallace)在他的 《Everything and More》一书中介绍了另外一个著名的证明:
令 x = 0.999...
所以 10x = 9.999...
两式相减得 9x = 9
所以 x = 1
       威廉·拜尔斯(William Byers)在《How Mathematicians Think》中评价这个证明:“0.999... 既可以代表把无限个分数加起来的过程,也可以代表这个过程的结果。许多学生仅仅把 0.999... 看作一个过程,但是 1 是一个数,过程怎么会等于一个数呢?这就是数学中的二义性⋯⋯他们并没有发现其实这个无限的过程可以理解成一个数。看了上面这个证明而相信等式成立的学生,可能还没有真正懂得无限小数的含义,更不用说理解这个等式的意义了。”

逐渐靠谱的证明
等比级数具有这么一个性质:如果 |r| < 1,那么(图):

那么我们就又有了一个快速的证明(图):

        这个证明最早出现在 1770 年大数学家欧拉(Leonhard Euler)的《代数的要素》(Elements of Algebra)中,不过当时他证明的是 10=9.999... 。
之后的数学课本中渐渐出现了更为形式化的极限证明(图):
  
       1846 年,美国教科书《大学算术》(The University Arithmetic)里这么说:在 0.999... 里,每增加一个 9,它都离 1 更近。
       1895 年的另一本教科书《学校算术》(Arithmetic for School)则说:如果有非常多的 9,那么它和 1 就相差无几了。意外的是,这些“形象的说法”却适得其反,学生们常常以为 0.999... 本身其实是比 1 小的。
       随着人们对实数更加深入的理解,0.999... = 1 有了一些更深刻的证明。1982 年,巴图(Robert. G. Bartle)和谢波特(D. R. Sherbert)在《实分析引论》(Introduction to Real Analysis)中给出了一个区间套的证明:给定一组区间套,则数轴上恰有一点包含在所有这些区间中;0.999... 对应于区间套[0, 1]、[0.9, 1]、[0.99, 1]、[0.999, 1] ... ,而所有这些区间的唯一交点就是 1,所以 0.999... = 1。
       弗雷德·里奇曼的文章《0.999... 等于 1 吗?》里则用戴德金分割给出了一个证明:所有比 0.999... 小的有理数都比 1 小,而可以证明所有小于 1 的有理数总会在小数点后某处异于 0.999... (因而小于 0.999... ),这说明 0.999... 和 1 的戴德金分割是一模一样的集合,从而说明 0.999... = 1 。
       格里菲思(H. B. Griffiths)和希尔顿(P. J. Hilton)在 1970 年出版的《A Comprehensive Textbook of Classical Mathematics: A Contemporary Interpretation》中,用柯西序列给出了另一个证明。

从未停止过的讨论
       尽管证明越来越完备,学生们的疑惑却从来没有因此减少。在品托(Pinto)和大卫·托教授的一份调查报告中写到,当学生们用高等方法证明了这个等式之后,会大吃一惊地说,这不对呀,0.999… 显然应该比 1 小呀。
       在互联网上,这个等式的魅力也依然不减。辩论 0.999… 是否等于 1 被讨论组 sci.math 评为“最受欢迎的运动”,各类问答网站中也总是会有网友激烈的讨论。诺贝尔奖获者费曼(Richard Feynman)也用这个等式开过一句玩笑。有一次他说到:“如果让我背圆周率,那我背到小数点后 762 位,然后就说 99999 等等等,就不背了。”这句话背后有一个很奇怪的笑点:从 π 的小数点后 762 位开始,出现了连续的 6 个 9,偏偏在这里来一个“等等等”,就会给人感觉好像后面全是 9,这相当于把 π 变成了一个有限小数。此后,π 的小数点后 762 位就被戏称为了费曼点(Feynman Point)。


回复

使用道具 举报

发表于 2012-7-17 11:28 | 显示全部楼层
很明显这个解释不具有权威性,这样的问题只能说明LZ是初中生
回复

使用道具 举报

 楼主| 发表于 2012-7-17 11:31 | 显示全部楼层
我大学不学初中课程,我主研相对论和量子力学

点评

主研相对论和量子力学?那就是说不是主修物理学?即非数学物理专业。您要是问为什么不能三等分角或许深度还大一点  发表于 2012-7-17 11:42
回复

使用道具 举报

发表于 2012-7-17 11:31 | 显示全部楼层
http://www.dkj1997.com/forum.php ... p;extra=&page=1你可以看看  讨论的比较多



回复

使用道具 举报

 楼主| 发表于 2012-7-17 11:32 | 显示全部楼层
集合论我才学不丁点
而已
!!!
回复

使用道具 举报

 楼主| 发表于 2012-7-17 11:34 | 显示全部楼层
和鹏竹 发表于 2012-7-17 11:31
http://www.dkj1997.com/forum.php?mod=viewthread&tid=9838&extra=&page=1你可以看看  讨论的比较多

我就是看了这个帖子才想写这些的
回复

使用道具 举报

发表于 2012-7-17 11:50 | 显示全部楼层
其实1/3=0.33和1=0.9999是等价的 说不出谁更本质,所以不能用其一推倒其二
推荐两种简单证明:
初中阶段证明:
N=0.99999....
则10N=9.99999...
相减9N=9,N=1
高中阶段证明:
0.9999...
=9*10~-1+9*10~-2+9*10~-3+....(用等比数列求和公式)
=0.9(1-0.1~N)/(1-0.1)   (N为位数,取极限无穷大)
=1
大学阶段证明:
关于极限的定义:对于一个数列An,对于任意小的树E,总存在N,当n>N时,有绝对值(An-A)<E.则数列An的极限是A。。。剩下的就不多说了

转自
http://www.dkj1997.com/forum.php?mod=viewthread&tid=1479
回复

使用道具 举报

发表于 2012-7-17 16:33 | 显示全部楼层
0.99999与1只能无限接近,不能等于,就像反比例函数一样
回复

使用道具 举报

 楼主| 发表于 2012-7-17 11:21 | 显示全部楼层 |阅读模式
     这个问题够狂的。
     我想试图用集合论解决这个问题。
     最完整的解释是;1/3=0.33333……2/3=0.666666…^3/3=1=0.9999999……
     集合论中,1可以看做3个1/3的集合,但其中0.333333……为数有无限多个,在无限的情况下,整体可以等于部分。
     依旧算下来:0.999999……中有由于是无限循环小数,整体等于部分=1
     后面,还有700多个方程放不上来……
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|大科技

GMT+8.8, 2025-1-3 13:43 , Processed in 0.097475 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表